skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wei, Guo-Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The multiscale topological learning framework, based on persistent topological Laplacians, captures complex interactions and enhances energy prediction accuracy in multi-atom systems. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  2. Abstract Khovanov homology has been the subject of much study in knot theory and low dimensional topology since 2000. This work introduces a Khovanov Laplacian and a Khovanov Dirac to study knot and link diagrams. The harmonic spectrum of the Khovanov Laplacian or the Khovanov Dirac retains the topological invariants of Khovanov homology, while their non-harmonic spectra reveal additional information that is distinct from Khovanov homology. 
    more » « less
  3. AI-driven drug discovery accelerates anti-addiction treatment by enhancing precision and targeting key neurochemical systems. 
    more » « less
    Free, publicly-accessible full text available June 11, 2026
  4. Category-specific topological learning enables efficient and accurate prediction of various properties of metal–organic frameworks. 
    more » « less
    Free, publicly-accessible full text available March 25, 2026
  5. ABSTRACT Protein structural fluctuations, measured by Debye‐Waller factors or B‐factors, are known to be closely associated with protein flexibility and function. Theoretical approaches have also been developed to predict B‐factor values, which reflect protein flexibility. Previous models have made significant strides in analyzing B‐factors by fitting experimental data. In this study, we propose a novel approach for B‐factor prediction using differential geometry theory, based on the assumption that the intrinsic properties of proteins reside on a family of low‐dimensional manifolds embedded within the high‐dimensional space of protein structures. By analyzing the mean and Gaussian curvatures of a set of low‐dimensional manifolds defined by kernel functions, we develop effective and robust multiscale differential geometry (mDG) models. Our mDG model demonstrates a 27% increase in accuracy compared to the classical Gaussian network model (GNM) in predicting B‐factors for a dataset of 364 proteins. Additionally, by incorporating both global and local protein features, we construct a highly effective machine‐learning model for the blind prediction of B‐factors. Extensive least‐squares approximations and machine learning‐based blind predictions validate the effectiveness of the mDG modeling approach for B‐factor predictions. 
    more » « less
    Free, publicly-accessible full text available March 15, 2026
  6. Artificial intelligence-assisted drug design is revolutionizing the pharmaceutical industry. Effective molecular features are crucial for accurate machine learning predictions, and advanced mathematics plays a key role in designing these features. Persistent homology theory, which equips topological invariants with persistence, provides valuable insights into molecular structures. The standard homology theory is based on a differential rule for the boundary operator that satisfies [Formula: see text] = 0. Our recent work has extended this rule by employing Mayer homology with generalized differentials that satisfy [Formula: see text] = 0 for [Formula: see text] 2, leading to the development of persistent Mayer homology (PMH) theory and richer topological information across various scales. In this study, we utilize PMH to create a novel multiscale topological vectorization for molecular representation, offering valuable tools for descriptive and predictive analyses in molecular data and machine learning prediction. Specifically, benchmark tests on established protein-ligand datasets, including PDBbind-v2007, PDBbind-v2013, and PDBbind-v2016, demonstrate the superior performance of our Mayer homology models in predicting protein-ligand binding affinities. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  7. Persistent topological Laplacians constitute a new class of tools in topological data analysis (TDA). They are motivated by the necessity to address challenges encountered in persistent homology when handling complex data. These Laplacians combine multiscale analysis with topological techniques to characterize the topological and geometrical features of functions and data. Their kernels fully retrieve the topological invariants of corresponding persistent homology, while their non-harmonic spectra provide supplementary information. Persistent topological Laplacians have demonstrated superior performance over persistent homology in the analysis of large-scale protein engineering datasets. In this survey, we offer a pedagogical review of persistent topological Laplacians formulated in various mathematical settings, including simplicial complexes, path complexes, flag complexes, digraphs, hypergraphs, hyperdigraphs, cellular sheaves, and N-chain complexes. 
    more » « less
  8. Abstract The fast evolution of SARS-CoV-2 and other infectious viruses poses a grand challenge to the rapid response in terms of viral tracking, diagnostics, and design and manufacture of monoclonal antibodies (mAbs) and vaccines, which are both time-consuming and costly. This underscores the need for efficient computational approaches. Recent advancements, like topological deep learning (TDL), have introduced powerful tools for forecasting emerging dominant variants, yet they require deep mutational scanning (DMS) of viral surface proteins and associated three-dimensional (3D) protein–protein interaction (PPI) complex structures. We propose an AlphaFold 3 (AF3)-assisted multi-task topological Laplacian (MT-TopLap) strategy to address this need. MT-TopLap combines deep learning with TDA models, such as persistent Laplacians (PL) to extract detailed topological and geometric characteristics of PPIs, thereby enhancing the prediction of DMS and binding free energy (BFE) changes upon virus mutations. Validation with four experimental DMS datasets of SARS-CoV-2 spike receptor-binding domain (RBD) and the human angiotensin-converting enzyme-2 (ACE2) complexes indicates that our AF3-assisted MT-TopLap strategy maintains robust performance, with only an average 1.1% decrease in Pearson correlation coefficients (PCC) and an average 9.3% increase in root mean square errors (RMSE), compared with the use of experimental structures. Additionally, AF3-assisted MT-TopLap achieved a PCC of 0.81 when tested with a SARS-CoV-2 HK.3 variant DMS dataset, confirming its capability to accurately predict BFE changes and adapt to new experimental data, thereby showcasing its potential for rapid and effective response to fast viral evolution. 
    more » « less